spaceBox Game

Seyyare Ece Akdag!

ABSTRACT

1 Istanbul Technical University, Graduate School of Science, Engineering, and Technology,
Department of Informatics, Architectural Design Computing, Istanbul, Turkey

2|stanbul Technical University, Faculty of Architecture, Department of Architecture,
Istanbul, Turkey

The aim of this investigation is to explore the computational programming
languages on the task to create a game in Processing language. A game algorithm
is aimed to be designed so that the definitions like player, obstacles, place, and
time are converted into computational representation in the scripting scene to
cooperate to become a game. The inspiration of the game design for this project is
the well-known mobile app game called “Flappy Bird”. The strategy for the game
development has started with the idea of creating such a simple yet enjoyable
arcade game. The game represents a possible coding simplicity for a beginner game
developer, plus its testing procedure is not complex as multi-leveled more complex
games, so that easy mistake detection is possible. The parallel design to the famous
arcade game is developed in the way that one player would be moving forward on
a two-dimensional scene set-up, and obstacles are going to be met by the player,
and using the control keys on the keyboard, the player would escape the obstacles
to collect more points. On such a development study, strategical features to be
considered are emerged such as considering movement, speed, location on screen,
gravity and so on. Concept-wise the game atmosphere is decided to be space and
objects are remined as geometries, so the name of the game has become
“spaceBox”. The main aim behind the conceptual idea was to make is simple to be
parallel with the minimalism of the game algorithm, and create a neutral vibe for
its target audience by not having negative connotations on any group of people
from different counties, beliefs, genders etc.

Keywords: Max. 5 keywords should be written in Calibri Light with 9.5-point size.
Each kevword should be separated bv a comma and must start with a capital letter.
01

Corresponding Author:
akdags22 @itu.edu.tr

Akdag, A. (2023). spaceBox Game.

JCoDe:
Design

Journal

of Computational

JCoDe | January 2023 | Akdag, S.



spaceBox Game

Seyyare Ece Akdag!

OzZET

istanbul Teknik Universitesi, Fen Bilimleri Enstitiisi, Bilisim Anabilim Dali, Mimari Tasarimda
Bilisim, istanbul, Turkiye
Zistanbul Teknik Universitesi, Mimarlik Fakiiltesi, Mimarlik Bélimd, istanbul, Tirkiye

Bu arastirmanin amaci, isleme dilinde bir oyun yaratma gorevi Uzerinden
hesaplamali programlama dillerini kesfetmektir. Oyuncu, engel, yer, zaman gibi
tanimlarin komut dosyasi olusturma sahnesinde sayisal temsile donusturilerek
oyun haline getirilmesi igin bir oyun algoritmasi tasarlanmak istenmistir. Bu proje
icin oyun tasariminin ilham kaynagi, “Flappy Bird” adli taninmis mobil uygulama
oyunudur. Oyun gelistirme stratejisi, bu kadar basit ama eglenceli bir atari oyunu
yaratma fikriyle baslamistir. Oyun, baslangic seviyede islem ve tasarim yapabilen
prosediri, cok seviyeli daha karmasik oyunlar kadar karmasik olmadigindan, test
etme prosedird hizli ve etkili bir sekilde hata saptama yapmaya yardimci
olmaktadir. ilham alinan bilindik atari oyununa paralel bir tasarim olarak, bir
oyuncunun iki boyutlu bir sahne kurgusunda ilerlemesi ve engellerin oyuncu
tarafindan asiimasi ve klavyedeki kontrol tuslarini kullanmasi seklinde bir 6ngori ve
algoritma semasi Gzerinden oyunun temeli gelistirildi. Oyuncu puan toplama amaci
dogrultusunda karsisina ¢ikan engellerden kacarak oyunda hayatta kalacak sekilde
bir altyapi kurgulanmistir. Boyle bir gelistirme calismasinda hareket, hiz, ekrandaki
konum, yercekimi gibi dikkate alinmasi gereken stratejik 6zellikler ortaya ¢ikar.
Konsept gelistirme asamalarinda oyun atmosferinin uzay olmasina karar verildi ve
oyuncu ve diger nesneler basit geometriler olarak ¢alisildi, bu nedenle oyunun adi
“spaceBox” oldu. Kavramsal fikrin arkasindaki temel amag, oyun algoritmasinin
minimalizmiyle paralel olarak basit ve higbir insan grubu Uzerinde negatif
cagrisimlarda bulunmayacak notr bir kurguda oyunu ilerletmektir.

Anahtar Kelimeler: Calibri Light 9.5 punto, virgll ile ayriimis, en fazla 5 anahtar
kelime yazilmalidir. Her kelime blyuk harfle baslamahdir.

Sorumlu Yazar:
akdags22 @itu.edu.tr

Akdag, S. (2023). spaceBox Game.

JCoDe: Journal of Computational
Design

02

JCoDe | Ocak 2023 | Akdag, S.



03

1. Overview

An arcade game design and coding methodology is created to
investigate the computational programming algorithms on game
development as a final project submission to Istanbul Technical
University, Department of Informatics, Program of Architectural Design
Computing Msc., Computer Programming in Architecture class. This
project is an investigation on how the famous arcade game called
“Flappy Bird” can be interpreted to develop such a simple two-
dimensional game. The programming language selected to develop the
game is Processing, due to its user-friendly interface and easy visual and
algorithmic testing possibility. The game provides a single play mode
for its users to navigate the white box character so that it can move and
gain points. During a single game experience, the users have one life to
lose or continue moving forward. The main aim is not being touched by
the obstacle objects called enemies in the code, as long as the player
keeps the white rectangle away from the enemies, the score is rising up
in the top left corner. An interface for the concept of space is designed
on a two-dimensional layout in Adobe Photoshop. The space
background image is implemented as the medium of the game
environment in Processing software.

The tutorials related on how to code the famous arcade game are
watched on YouTube as to source code forming training so that the
algorithmic logic of such related examples can be understood and a
similar yet game can be designed with its unique and original
characteristics of its own. Processing software allowed creating a main
code of game working, and some related additional classes are created
and integrated inside the main code, one class for enemy object
creations and definitions, one class code for the score creations. All the
game when considered as one is strategically merged on a frame by
frame action based on an algorithmic strategic foundation on
Processing Software.

2. Interface Design

The user interface is developed upon the concept of creating a neutral
connotation in terms of not discriminating anyone due to gender,
country or any possible divergence in the life of people, as the
methodology to define a target audience of players, and a set up of

spaceBox Game



space concept is found to be coherent to be attractive to all possible
target players of the game. Therefore, first the pixel of the set up of the
game is defined on Processing software as 1440 x 300 pixels. Then,
using to create background and game objects, Adobe Photoshop is
used. The background image is a collage of space elements like stars,
and pixel clouds are generated and put in the visual to color the
background. A simple path-like image is aimed so that, both the space
vibe would be satisfied, and the game path player and the obstacle
objects would be visible for the comfort of the player. The final

outcome background image is as seen in Figure 1.

In order to attain the characters as the spaceship and enemy bombs,
pixel objects are created and saved as backgroundless png objects. The
design with the objects and object moving directions are planned as
Figure 2 represents.

An another main concern about the game, texts are planned to show
the score and the playing the game button, a font is downloaded in the
name of “ADAM” from online sources, and it has been added into the
“data” folder of the project. The Play Button text and the score text on
the top left corner is shown by Figure 3 and Figure 4 correspondingly.

PLAY AGAIN

Figure 1: Background Image
Design

Figure 2: Interface Design with
the Pixel Objects

Figure 3: Play Button Text

04

JCoDe | Ocak 2023 | Akdag, S.



Figure 4: Interface with the
Score Board

Figure 5: The Algorithm
Scheme for spaceBox Game

05

All the design elements are collected in “data” folder and used during
the Processing scripting of the game procedure. The article is going to
be showing the algorithmic relationships of the design and the game
development strategies in the upcoming sections.

3. Game Algorithm Scheme

In order to be able to start a coding work of the spaceBox game on the
Processing software, a map of the planned algorithm is created as a
flowchart, so that rules are set up, and the conversion of the game
design into code can be done step by step and be represented in the
Processing language. From the game start to the death of the player
and “play again” option, the game algorithm scheme is formed as
Figure 5.

Open Game

Loop Print Result

Score
Waiting Playing

Resume

Restart

4. Coding Procedure & Processing Software Work

In the definition section of Processing work before starting the set-up
part, to create spaceBox game elements like images to be imported,
player values of size, position, speed, acceleration, gravity effect,
Boolean definitions for game control, font and enemy class array are all
defined. The complete initial definitions for the game in the main code
section is shown by Figure 6 below.

spaceBox Game



beackground image
PImage bg;

PImage ship;

int v;

ff radius of player
int radius = 15;

f{ the horizontal speed
int horiz = 5;

ff jump

int jump = 53

ff position of pl

float xp;
float yp;
Fi timer

int beging

ff speed of p
float xs = 83
float ys = B3

ff slowing down
fleat r = B.7;

ff gravity

float gravity = 0.4;

!/ the booleans of movement
boolean upPressed = false;
boolean downPressed = false;
boolean rightPressed = false;
boolean leftPressed = false;
int enemyNumber = 10;

boolean alive = false;

boolean won = false;

ff the text

PFont font;

ff the wave mowvment for the enemies

float os; Figure 6: Processing Interface
float period = 300; Game Code Setup

float amplitude = 180;
ff the array
enemy[] enemys;

The code continues with void setup part where functions are initiated
to be drawn or worked on by the game. In the set-up part background
image import, player box placement, enemy array of random 10 orange

06

JCoDe | Ocak 2023 | Akdag, S.



Figure 7: Processing
InterfaceSet-up Codes

07

boxes, related texts, buttons are all set up so that, operations on the
set-up items created can proceed with the further steps of user
experience on the game. The set-up codes are shown by Figure 7.

void setup() {
ff size of background
size(l44m, 308);
bg = loadImage("background.ipg");

ff starting position of pl
¥p = width*8.2;
v height/2;

ff enemy array
enemys = new enemy[enemyNumber];

S rectmode setup

rectMode (CENTER) ;

S text setup
textAlign(CENTER, CEMTER):

nostroke();

S dmport of font

font = createFont("ADAM.otf", 108);
textFont(font,50);

for (int 1 = B3 d<enemys.length; i++) {
enemys[i] = new enemy(-16, 12, &6);
H

startScore = new Score (0);

The draw part deals with the code to sustain the conditions to continue
the game as alive player or die and have the condition of death. The
possibilities are created by the if loop coding, as Figure 8 shows.

The control and movement of the player is characterized by the code
with the operations in Figure 9. The user game playing items as the keys
are functionalized so that movements and gravity and navigation initials
are experienced and controlled by the user by attaining functions to
key-pressed actions of the user. The code showing the key-pressed
attainment is shown by Figure 10.

spaceBox Game



if (aldve) {
/{score
fill(zaa});
text("Score = ", 200,50,50);
begin = millis()/1000;
fill(zaa});
text(begin, 370,50,50);

Sf control the pl
controll();

move () ;
walls();
display();
for (int 1 = B@; d<enemys.length; i++) {
enemys[i].run();
{fstartScore.countUp();
fifill(zee);

fitext{startScore.getTime(),370,50,508);
fitext({startScore.getTime(),370, 50,58);

1
} else if (laldiwe) {
if (lweon) {
fi11{255});
text("play again", width/2, heightf2};
} else if (won) {
S/ then make the text green
fill{@, 255, @);

text("VYOU WON ‘n PLAY AGAIN", width/2, height/2);

1
1 Figure 8: Processing Interface If

} Loop Codes

08

JCoDe | Ocak 2023 | Akdag, S.



vold controll{) {
ff go to right
if (rightPressed) {
¥s = horiz;
1
ff go to left
it (leftPressed) {
¥s = -horiz;
1
ff g0 oup
if {upPressed) {
¥s = -jump;
1
ff go down
if {(downPressed) {
¥S += jump/2;
1
1

vold mowve() {
/f speed + position

P += XS}
ffspeed + position
¥R += ys;

J/f gravity + speed
¥s += grawvity;
/f speed + resistance
HS *= r}
1
/i player pl
vodd display() {

fill({255};
rect{xp, yp, radius*2, radius#2);
1
ff =so0ldid walls
void walls() {
ff top soldid wall
if (yp <= radius) {
yp = radius+l;
ys = -ys*(r/2);
1

Figure 9: Processing Interface
Move and Control Operations

09

spaceBox Game



/f booleans setup
void keyPressed() {

if (keyCode == UP) {
upPressed = true;

}

if (keyCode == DOWN) {
downPressed = true;

}

if (keyCode == LEFT) {
leftPressed = true;

b

if (keyCode == RIGHT) {
rightPressed = true;

b
b

void keyReleased() {

if (keyCode == UP) {
upPressed = falze;

}

if (keyCode == DOWN) {
downPressed = falsze;

}

if (keyCode == LEFT) {
leftPressed = false;
1

if (keyCode == RIGHT) {
rightPressed = falze;
1
1

4.1. Classes

Object oriented design is integrated into the game design in order to
differentiate some elements from the game to work in its own
algorithm and the working elements as classes are in need in the game
to be a complete arcade game model. First class created in the game is
the enemy class to define how the randomly created 10 obstacle boxes
are working and the properties to move, position on the screen

Figure 10: Processing Interface
Booleans Function Attainment
to Keys

010

JCoDe | Ocak 2023 | Akdag, S.



Figure 11: Processing Interface

011

“enemy” Class

randomly and the ability to kill the player when in touch with them is
given to the class by the code shown by Figure 11.

class enemy ﬂ
/{ speed of enemy
float speed;
/% position of enemy
float x1;
/vy position of enemy
float yl;
/f radius of enemy;
int rad;
ff row size;
float rowNumber;
/f size of spawning rows;
float rowSize;
enemy{int spt, int radt, int rowNumbert) {
speed = spt;
rad = radt;
rowhumber = rowhumbert;
rowsize = height/rowNumber;
/{ respawns the enemy
respawn{);
1
/{ makes the enemy mowve
void move() {
%l += speed+os;
H
// random position
void respawn() {
xL = (int){(int) (random{®, width/rowSize))}+rowsSize)+width;
f7 %1 = dnt{random{radius, width-radius));
yL = {(int)({int){random{l, rowNumber+l))+rowSize-rowSize/2);
1
/4 kill the player
void collide() {
if {abs(xp-x1)<rad+radius && abs(yp-yl)<rad+radius) {
alive = false;
1
1
void teleport() {
if (xl<-radius) {
respawn();
1
1
void display() {
fil1{255, 150, @);
rect(xl, vl, rad+2, rad+2);
}
void run() {
move();
teleport();
display(};
collide();

H

.
Iy

Another class need occurred when a score counter was in need to be
created and implemented in the game coding procedure. First attempts
to create the score counter by distance the player is achieved to make
failed to give a gradually increasing score, so a timer is designed inside

spaceBox Game



the “score” class, and with speed adjustments according to the frame
rate, an increasing score on the top left of the game interface is
achieved. The class code is shown by Figure 12.

class Score

{

float Time;

Score(float set)

{

Time = set;
}
float getTime()
{

return(Time) ;
}
void setTime (float set)
{

Time = set;
}
vold countUp()
{

S Time += (L/frameRate+0.00L+0.95);
Time += (1fframeRate);

}

vold countDown()

{

Time -= (1/frameRate+0.001+0.95);
}

}

5. Conclusion & Suggestions for Further Improvement

The whole project is completed as an arcade game design task at the
end, and the resulting game worked well accept minor enhancements
can be made in the further investigations to create a more fun and
more complex game outcomes. The feeling of movement, speed,
gravity, and the desire to play the game again and again were the
ultimate successes of the whole work. The design of space environment
was also successful however the characters of spaceship and enemy
bombs could not be integrated in the game. For further improvement,
dual play options can be developed, keeping the track of score for the
top 10 scores could be achieved, level creation can be fun for the
players to experience different backgrounds, enemies, and harder
speed conditions. Music as a very effective tool for many games could

Figure 12: Processing Interface
“score” Class

012

JCoDe | Ocak 2023 | Akdag, S.



013

be integrated into the game and opening and closing the music could
be a button option at the beginning of the game. Many alternatives to
these improvement suggestions could be proposed to enhance the joy
experience of the game by its players, however with its simplicity,
minimal and nostalgic two-dimensional pixel design interface, and
attracting the players to play the game again for many times, the
spaceBox game succeeded standing out as a well-working optimal
arcade game for its users.

6. Related Links

Processing Game Code & Interface Folders:
https://drive.google.com/drive/folders/16GUvSNMdr2YYSKo9IEiFi6te
138w4nla?usp=sharing

Game Video Link:
https://drive.google.com/drive/folders/1pcQNJnYCpmHZTiJMaLfgCpp
GzJ3389Q8?usp=share link

Presentation:
https://drive.google.com/drive/folders/1TMba2 UnGz3801IZLNulwW
EKd1dulJXkm?usp=sharing

References

Books

Harbour, J. S. (2007). Game programming all in one. Thomson Course
Technology.

Web Resources

Facredyn, A. (2017, April 2). Processing game tutorial 1. YouTube. Retrieved
January 21, 2023, from https://www.youtube.co Facredyn, A. (2017,
April 2). Processing game tutorial 1. YouTube. Retrieved January 21,
2023,
https://www.youtube.com/watch?v=QJGcxeF3YBs&amp;list=PLZDe
NWpA-ZLxr8r UX8XpWc-RXNG4Foez&amp;index=4&amp;t=233s
m/watch?v=QJGcxeF3YBs&list=PLZDenWpA-ZLxr8r UX8XpWc-
RXNG4Foez&index=4&t=233s

Journals

spaceBox Game


https://drive.google.com/drive/folders/16GUv5NMdr2YYSKo9lEiFi6te138w4nIa?usp=sharing
https://drive.google.com/drive/folders/16GUv5NMdr2YYSKo9lEiFi6te138w4nIa?usp=sharing
https://drive.google.com/drive/folders/1pcQNJnYCpmHZTiJMaLfgCppGzJ3389Q8?usp=share_link
https://drive.google.com/drive/folders/1pcQNJnYCpmHZTiJMaLfgCppGzJ3389Q8?usp=share_link
https://drive.google.com/drive/folders/1TMba2_UnGz3801IZLNuIwWEKd1duJXkm?usp=sharing
https://drive.google.com/drive/folders/1TMba2_UnGz3801IZLNuIwWEKd1duJXkm?usp=sharing

Santos, S. S. (2021). The science behind Flappy Bird. 2021 IEEE Integrated
STEM Education Conference (ISEC).
https://doi.org/10.1109/isec52395.2021.9763893

014

JCoDe | Ocak 2023 | Akdag, S.



